Question Sheet 3, Limits III.

Divergence

1. i) Let f be defined on a right-hand open interval of $a \in \mathbb{R}$ (i.e. on $(a, a+\eta)$ for some $\eta>0)$. Write out the $K-\delta$ definition for

$$
\lim _{x \rightarrow a+} f(x)=+\infty .
$$

Let f be defined on a left-hand open interval of $a \in \mathbb{R}$ (i.e. on $(a-\eta, a)$ for some $\eta>0$). Write out the $K-\delta$ definition for

$$
\lim _{x \rightarrow a-} f(x)=-\infty
$$

ii) Let f be defined for all sufficiently large positive x. Write out the $K-X$ definitions for each of the following limits,

$$
\lim _{x \rightarrow+\infty} f(x)=+\infty, \quad \lim _{x \rightarrow+\infty} f(x)=-\infty
$$

iii) Let f be defined for all sufficiently large negative x. Write out the $K-X$ definitions for each of the following limits.

$$
\lim _{x \rightarrow-\infty} f(x)=+\infty, \quad \lim _{x \rightarrow-\infty} f(x)=-\infty
$$

2. i) Write

$$
G(x)=\frac{x}{x^{2}-1}
$$

as partial fractions for $x \neq 1$ or -1 .
ii) Prove that if $x>1$ then

$$
G(x)>\frac{1}{2(x-1)} .
$$

Thus verify the $K-\delta$ definition (seen in Question 1i) of

$$
\lim _{x \rightarrow 1+} G(x)=+\infty
$$

iii) Prove, that if $0<x<1$ then

$$
G(x) \leq \frac{1}{2(x-1)}+\frac{1}{2}
$$

Thus show that the $K-\delta$ definition (seen in Question 1i) of

$$
\lim _{x \rightarrow 1-} G(x)=-\infty
$$

is verified by choosing $\delta=\min (1,-1 /(2 K-1))$ for any given $K<0$.
iv) Evaluate (so there is no need to verify the definition)

$$
\lim _{x \rightarrow-1+} G(x) \quad \text { and } \quad \lim _{x \rightarrow-1-} G(x) .
$$

v) Evaluate

$$
\lim _{x \rightarrow+\infty} G(x) \text { and } \lim _{x \rightarrow-\infty} G(x),
$$

if they exist.
vi) Sketch the graph of G.
3. Verify the $K-\delta$ definitions of

$$
\text { i) } \lim _{x \rightarrow-3} \frac{x^{2}}{(x+3)^{2}}=+\infty \quad \text { and } \quad \text { ii) } \lim _{x \rightarrow-3} \frac{x}{(x+3)^{2}}=-\infty
$$

Hint For part i look for a simpler, lower bound for $x^{2} /(x+3)^{2}$ while for part ii look for a simpler, upper bound for $x /(x+3)^{2}$.
4. Define $H: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
H(x)=\frac{1}{x^{2}+1}+x
$$

Prove by verifying the $K-X$ definitions that

$$
\lim _{x \rightarrow+\infty} H(x)=+\infty \quad \text { and } \quad \lim _{x \rightarrow-\infty} H(x)=-\infty .
$$

Sketch the graph of H.

Limit Rules

5. Using the Limit Rules evaluate
i)

$$
\lim _{x \rightarrow 0} \frac{3 x^{2}+4 x+1}{x^{2}+4 x+3}
$$

ii)

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}+4 x+1}{x^{2}+4 x+3}
$$

iii)

$$
\lim _{x \rightarrow-1} \frac{3 x^{2}+4 x+1}{x^{2}+4 x+3} .
$$

Note When using a Limit Rule you must write down which Rule you are using and you must show that any necessary conditions of that rule are satisfied.
6. (i) What is wrong with the argument:

$$
\begin{aligned}
\lim _{x \rightarrow 0} x^{3} \sin \left(\frac{\pi}{x}\right)= & \lim _{x \rightarrow 0} x^{3} \times \lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right) \\
& \quad \text { by the Product Rule } \\
= & 0 \times \lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right) \\
= & 0
\end{aligned}
$$

(ii) Evaluate

$$
\lim _{x \rightarrow 0} x^{3} \sin \left(\frac{\pi}{x}\right)
$$

Exponential and trigonometric examples

7. Recall that in the lectures we have shown that

$$
\lim _{x \rightarrow 0} e^{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1
$$

Use these to evaluate the following limits which include the hyperbolic functions.
(i)

$$
\lim _{x \rightarrow 0} \frac{\sinh x}{x}
$$

ii)

$$
\lim _{x \rightarrow 0} \frac{\tanh x}{x},
$$

iii)

$$
\lim _{x \rightarrow 0} \frac{\cosh x-1}{x^{2}}
$$

8. i) Assuming that $e^{x}>x$ for all $x>0$ verify the $\varepsilon-X$ definitions of

$$
\lim _{x \rightarrow+\infty} e^{-x}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} e^{x}=0
$$

Deduce (using the Limit Rules) that

$$
\lim _{x \rightarrow+\infty} \tanh x=1 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \tanh x=-1
$$

Sketch the graph of $\tanh x$.

Additional Questions

9. i. Prove that

$$
\left|e^{x}-1-x-\frac{x^{2}}{2}-\frac{x^{3}}{6}\right|<\frac{2}{4!}\left|x^{4}\right|
$$

for $|x|<1 / 2$.

Hint Use the method seen in the notes where it was shown that $\left|e^{x}-1-x\right|<\left|x^{2}\right|$ for $|x|<1 / 2$.
ii. Deduce

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x-x^{2} / 2}{x^{3}}=\frac{1}{6} .
$$

iii. Use Part ii. to evaluate

$$
\lim _{x \rightarrow 0} \frac{\sinh x-x}{x^{3}}
$$

10. Recall that in the lectures we have shown that

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
$$

Use this to evaluate (without using L'Hôpital's Rule)
i)

$$
\lim _{\theta \rightarrow 0} \frac{\theta}{\tan \theta}
$$

ii)

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta-\tan \theta}{\theta^{3}}
$$

